1.7 Heap Sort
Category Algorithm
Heap Sort is a sorting algorithm designed using the heap data structure. A heap is a nearly complete binary tree structure that satisfies the heap property: the key of a child node is always less than (or greater than) its parent node. Heap Sort can be considered a selection sort that utilizes the concept of a heap. It involves two methods:
- Max Heap: Each node's value is greater than or equal to its child nodes' values, used for ascending order sorting.
- Min Heap: Each node's value is less than or equal to its child nodes' values, used for descending order sorting.
The average time complexity of Heap Sort is Ο(nlogn).
1. Algorithm Steps
- Create a heap H[0……n-1].
- Swap the heap's root (maximum value) with its last element.
- Reduce the heap size by 1 and call
shift_down(0)
to adjust the new root element to its appropriate position. - Repeat steps 2 and 3 until the heap size is 1.
2. Dynamic Demonstration
Code Implementation
JavaScript
var len; // Declare len as a global variable since multiple functions need the data length
function buildMaxHeap(arr) { // Build a max heap
len = arr.length;
for (var i = Math.floor(len/2); i >= 0; i--) {
heapify(arr, i);
}
}
function heapify(arr, i) { // Heap adjustment
var left = 2 * i + 1,
right = 2 * i + 2,
largest = i;
if (left < len && arr[left] > arr[largest]) {
largest = left;
}
if (right < len && arr[right] > arr[largest]) {
largest = right;
}
if (largest != i) {
swap(arr, i, largest);
heapify(arr, largest);
}
}
function swap(arr, i, j) {
var temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
function heapSort(arr) {
buildMaxHeap(arr);
for (var i = arr.length-1; i > 0; i--) {
swap(arr, 0, i);
len--;
heapify(arr, 0);
}
return arr;
}
Python
def buildMaxHeap(arr):
import math
for i in range(math.floor(len(arr)/2),-1,-1):
heapify(arr,i)
def heapify(arr, i):
left = 2*i+1
right = 2*i+2
largest = i
if left < arrLen and arr[left] > arr[largest]:
largest = left
if right < arrLen and arr[right] > arr[largest]:
largest = right
if largest != i:
swap(arr, i, largest)
heapify(arr, largest)
def swap(arr, i, j):
arr[i], arr[j] = arr[j], arr[i]
def heapSort(arr):
global arrLen
arrLen = len(arr)
buildMaxHeap(arr)
for i in range(len(arr)-1,0,-1):
swap(arr,0,i)
arrLen -=1
heapify(arr, 0)
return arr
Go
func heapSort(arr []int) []int {
arrLen := len(arr)
buildMaxHeap(arr, arrLen)
for i := arrLen - 1; i >= 0; i-- {
swap(arr, 0, i)
arrLen -= 1
heapify(arr, 0, arrLen)
}
return arr
}
func buildMaxHeap(arr []int, arrLen int) {
for i := arrLen / 2; i >= 0; i-- {
heapify(arr, i, arrLen)
}
}
func heapify(arr []int, i, arrLen int) {
left := 2*i + 1
right := 2*i + 2
largest := i
if left < arrLen && arr[left] > arr[largest] {
largest = left
}
if right < arrLen && arr[right] > arr[largest] {
largest = right
}
if largest != i {
swap(arr, i, largest)
heapify(arr, largest, arrLen)
}
}
func swap(arr []int, i, j int) {
arr[i], arr[j] = arr[j], arr[i]
}
Java
public class HeapSort implements IArraySort {
@Override
public int[] sort(int[] sourceArray) throws Exception {
// Copy the array to avoid modifying the parameter
int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
int len = arr.length;
buildMaxHeap(arr, len);
for (int i = len - 1; i > 0; i--) {
swap(arr, 0, i);
len--;
heapify(arr, 0, len);
}
return arr;
}
private void buildMaxHeap(int[] arr, int len) {
for (int i = (int) Math.floor(len / 2); i >= 0; i--) {
heapify(arr, i, len);
}
}
private void heapify(int[] arr, int i, int len) {
int left = 2 * i + 1;
int right = 2 * i + 2;
int largest = i;
if (left < len && arr[left] > arr[largest]) {
largest = left;
}
if (right < len && arr[right] > arr[largest]) {
largest = right;
}
if (largest != i) {
swap(arr, i, largest);
heapify(arr, largest, len);
}
}
private void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
PHP
function buildMaxHeap(&$arr)
{
global $len;
for ($i = floor($len/2); $i >= 0; $i--) {
heapify($arr, $i);
}
}
function heapify(&$arr, $i)
{
global $len;
$left = 2 * $i + 1;
$right = 2 * $i + 2;
$largest = $i;
if ($left < $len && $arr[$left] > $arr[$largest]) {
$largest = $left;
}
if ($right < $len && $arr[$right] > $arr[$largest]) {
$largest = $right;
}
if ($largest != $i) {
swap($arr, $i, $largest);
heapify($arr, $largest);
}
}
function swap(&$arr, $i, $j)
{
$temp = $arr[$i];
$arr[$i] = $arr[$j];
$arr[$j] = $temp;
}
function heapSort($arr) {
global $len;
$len = count($arr);
buildMaxHeap($arr);
for ($i = count($arr) - 1; $i > 0; $i--) {
swap($arr, 0, $i);
$len--;
heapify($arr, 0);
}
return $arr;
}
C
#include <stdio.h>
#include <stdlib.h>
void swap(int *a, int *b) {
int temp = *b;
*b = *a;
*a = temp;
}
void max_heapify(int arr[], int start, int end) {
int dad = start;
int son = dad * 2 + 1;
while (son <= end) {
if (son + 1 <= end && arr[son] < arr[son + 1]) {
son++;
}
if (arr[dad] > arr[son]) {
return;
} else {
swap(&arr[dad], &arr[son]);
dad = son;
son = dad * 2 + 1;
}
}
}
void heap_sort(int arr[], int len) {
int i;
for (i = len / 2 - 1; i >= 0; i--) {
max_heapify(arr, i, len - 1);
}
for (i = len - 1; i > 0; i--) {
swap(&arr[0], &arr[i]);
max_heapify(arr, 0, i - 1);
}
}
int main() {
int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };
int len = (int) sizeof(arr) / sizeof(*arr);
heap_sort(arr, len);
int i;
for (i = 0; i < len; i++) {
printf("%d ", arr[i]);
}
printf("\n");
return 0;
}
int son = dad * 2 + 1;
while (son <= end) { // If the child node pointer is within range, compare
if (son + 1 <= end && arr[son] < arr[son + 1]) // Compare the two child nodes first, choose the largest
son++;
if (arr[dad] > arr[son]) // If the parent node is greater than the child node, the adjustment is complete, directly exit the function
return;
else { // Otherwise, swap the parent and child contents and continue comparing the child node with the grandchild node
swap(&arr[dad], &arr[son]);
dad = son;
son = dad * 2 + 1;
}
}
void heap_sort(int arr[], int len) {
int i;
// Initialize, i starts from the last parent node to adjust
for (i = len / 2 - 1; i >= 0; i--)
max_heapify(arr, i, len - 1);
// First, swap the first element with the one before the sorted elements, then re-adjust until the sorting is complete
for (i = len - 1; i > 0; i--) {
swap(&arr[0], &arr[i]);
max_heapify(arr, 0, i - 1);
}
}
int main() {
int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };
int len = (int) sizeof(arr) / sizeof(*arr);
heap_sort(arr, len);
int i;
for (i = 0; i < len; i++)
printf("%d ", arr[i]);
printf("\n");
return 0;
}
1.7 Heap Sort