Java Example - Producer/Consumer Problem
The producer and consumer problem is a classic issue in thread models: producers and consumers share the same storage space during the same time period. As shown in the diagram below, producers store data in the space, while consumers retrieve data. Without proper coordination, the following situations may occur:
The storage space is full, and the producer is occupying it, while the consumer waits for the producer to free up space to remove products. The producer waits for the consumer to consume products to add more to the space. This mutual waiting can lead to a deadlock.
The following example demonstrates how to solve the producer/consumer problem using threads:
Example
/*
author by tutorialpro.org
ProducerConsumerTest.java
*/
public class ProducerConsumerTest {
public static void main(String[] args) {
CubbyHole c = new CubbyHole();
Producer p1 = new Producer(c, 1);
Consumer c1 = new Consumer(c, 1);
p1.start();
c1.start();
}
}
class CubbyHole {
private int contents;
private boolean available = false;
public synchronized int get() {
while (available == false) {
try {
wait();
}
catch (InterruptedException e) {
}
}
available = false;
notifyAll();
return contents;
}
public synchronized void put(int value) {
while (available == true) {
try {
wait();
}
catch (InterruptedException e) {
}
}
contents = value;
available = true;
notifyAll();
}
}
class Consumer extends Thread {
private CubbyHole cubbyhole;
private int number;
public Consumer(CubbyHole c, int number) {
cubbyhole = c;
this.number = number;
}
public void run() {
int value = 0;
for (int i = 0; i < 10; i++) {
value = cubbyhole.get();
System.out.println("Consumer #" + this.number+ " got: " + value);
}
}
}
class Producer extends Thread {
private CubbyHole cubbyhole;
private int number;
public Producer(CubbyHole c, int number) {
cubbyhole = c;
this.number = number;
}
public void run() {
for (int i = 0; i < 10; i++) {
cubbyhole.put(i);
System.out.println("Producer #" + this.number + " put: " + i);
try {
sleep((int)(Math.random() * 100));
} catch (InterruptedException e) { }
}
}
}
The above code produces the following output:
Consumer #1 got: 0
Producer #1 put: 0
Producer #1 put: 1
Consumer #1 got: 1
Producer #1 put: 2 Consumer #1 got: 2 Producer #1 put: 3 Consumer #1 got: 3 Producer #1 put: 4 Consumer #1 got: 4 Producer #1 put: 5 Consumer #1 got: 5 Producer #1 put: 6 Consumer #1 got: 6 Producer #1 put: 7 Consumer #1 got: 7 Producer #1 put: 8 Consumer #1 got: 8 Producer #1 put: 9 Consumer #1 got: 9