HTML5 Entity Names (Letter - S)
Not all entities in the table below are correctly displayed in all browsers.
Currently, IE 11 is the only browser that correctly displays all HTML5 entities.
| Character | Entity Name | Hexadecimal |
|---|---|---|
| Ś | Sacute | 0015A |
| ś | sacute | 0015B |
| ‚ | sbquo | 0201A |
| ⪼ | Sc | 02ABC |
| ≻ | sc | 0227B |
| ⪸ | scap | 02AB8 |
| Š | Scaron | 00160 |
| š | scaron | 00161 |
| ≽ | sccue | 0227D |
| ⪴ | scE | 02AB4 |
| ⪰ | sce | 02AB0 |
| Ş | Scedil | 0015E |
| ş | scedil | 0015F |
| Ŝ | Scirc | 0015C |
| ŝ | scirc | 0015D |
| ⪺ | scnap | 02ABA |
| ⪶ | scnE | 02AB6 |
| ⋩ | scnsim | 022E9 |
| ⨓ | scpolint | 02A13 |
| ≿ | scsim | 0227F |
| С | Scy | 00421 |
| с | scy | 00441 |
| ⋅ | sdot | 022C5 |
| ⊡ | sdotb | 022A1 |
| ⩦ | sdote | 02A66 |
| ⤥ | searhk | 02925 |
| ⇘ | seArr | 021D8 |
| ↘ | searr | 02198 |
| ↘ | searrow | 02198 |
| § | sect | 000A7 |
| ; | semi | 0003B |
| ⤩ | seswar | 02929 |
| ∖ | setminus | 02216 |
| ∖ | setmn | 02216 |
| ✶ | sext | 02736 |
| 𝔖 | Sfr | 1D516 |
| 𝔰 | sfr | 1D530 |
| ⌢ | sfrown | 02322 |
| ♯ | sharp | 0266F |
| Щ | SHCHcy | 00429 |
| щ | shchcy | 00449 |
| Ш | SHcy | 00428 |
| ш | shcy | 00448 |
| ↓ | ShortDownArrow | 02193 |
| ← | ShortLeftArrow | 02190 |
| ∣ | shortmid | 02223 |
| ∥ | shortparallel | 02225 |
| → | ShortRightArrow | 02192 |
| ↑ | ShortUpArrow | 02191 |
| | shy | 000AD |
| Σ | Sigma | 003A3 |
| σ | sigma | 003C3 |
| ς | sigmaf | 003C2 |
| ς | sigmav | 003C2 |
| ∼ | sim | 0223C |
| ⩪ | simdot | 02A6A |
| ≃ | sime | 02243 |
| ≃ | simeq | 02243 |
| ⪞ | simg | 02A9E |
| ⪠ | simgE | 02AA0 |
| ⪝ | siml | 02A9D |
| ⪟ | simlE | 02A9F |
| ≆ | simne | 02246 |
| ⨤ | simplus | 02A24 |
| ⥲ | simrarr | 02972 |
| ← | slarr | 02190 |
| ∘ | SmallCircle | 02218 |
| ∖ | smallsetminus | 02216 |
| ⨳ | smashp | 02A33 |
| ⧤ | smeparsl | 029E4 |
| ∣ | smid | 02223 |
| ⌣ | smile | 02323 |
| ⪪ | smt | 02AAA |
| ⪬ | smte | 02AAC |
| ⪬︀ | smtes | 02AAC + 0FE00 |
| Ь | SOFTcy | 0042C |
| ь | softcy | 0044C |
| / | sol | 0002F |
| ⧄ | solb | 029C4 |
| ⌿ | solbar | 0233F |
| 𝕊 | Sopf | 1D54A |
| 𝕤 | sopf | 1D564 |
| ♠ | spades | 02660 |
| ♠ | spadesuit | 02660 |
| ∥ | spar | 02225 |
| ⊓ | sqcap | 02293 |
| ⊓︀ | sqcaps | 02293 + 0FE00 |
| ⊔ | sqcup | 02294 |
| ⊔︀ | sqcups | 02294 + 0FE00 |
| √ | Sqrt | 0221A |
| ⊏ | sqsub | 0228F |
| ⊑ | sqsube | 02291 |
| ⊏ | sqsubset | 0228F |
| ⊑ | sqsubseteq | 02291 |
| ⊐ | sqsup | 02290 |
| ⊒ | sqsupe | 02292 |
| ⊐ | sqsupset | 02290 |
| ⊒ | sqsupseteq | 02292 |
| □ | squ | 025A1 |
| □ | Square | 025A1 |
| □ | square | 025A1 |
| ⊓ | SquareIntersection | 02293 |
| ⊏ | SquareSubset | 0228F |
| ⊑ | SquareSubsetEqual | 02291 |
| ⊐ | SquareSuperset | 02290 |
| ⊒ | SquareSupersetEqual | 02292 |
| ⊔ | SquareUnion | 02294 |
| ▪ | squarf | 025AA |
| ▪ | squf | 025AA |
| → | srarr | 02192 |
| 𝒮 | Sscr | 1D4AE |
| 𝓈 | sscr | 02216 |
| ⌣ | ssmile | 02323 |
| ⋆ | sstarf | 022C6 |
| ⋆ | Star | 022C6 |
| ☆ | star | 02606 |
| ★ | starf | 02605 |
| ϵ | straightepsilon | 003F5 |
| ϕ | straightphi | 003D5 |
| ¯ | strns | 000AF |
| ⋐ | Sub | 022D0 |
| ⊂ | sub | 02282 |
| ⪽ | subdot | 02ABD |
| ⫅ | subE | 02AC5 |
| ⊆ | sube | 02286 |
| ⫃ | subedot | 02AC3 |
| ⫁ | submult | 02AC1 |
| ⫋ | subnE | 02ACB |
| ⊊ | subne | 0228A |
| ⪿ | subplus | 02ABF |
| ⥹ | subrarr | 02979 |
| ⋐ | Subset | 022D0 |
| ⊂ | subset | 02282 |
| ⊆ | subseteq | 02286 |
| ⫅ | subseteqq | 02AC5 |
| ⊆ | SubsetEqual | 02286 |
| ⊊ | subsetneq | 0228A |
| ⫋ | subsetneqq | 02ACB |
| ⫇ | subsim | 02AC7 |
| ⫕ | subsub | 02AD5 |
| ⫓ | subsup | 02AD3 |
| ≻ | succ | 0227B |
| ⪸ | succapprox | 02AB8 |
| ≽ | succcurlyeq | 0227D |
| ≻ | Succeeds | 0227B |
| ⪰ | SucceedsEqual | 02AB0 |
| ≽ | SucceedsSlantEqual | 0227D |
| ≿ | SucceedsTilde | 0227F |
| ⪰ | succeq | 02AB0 |
| ⪺ | succnapprox | 02ABA |
| ⪶ | succneqq | 02AB6 |
| ⋩ | succnsim | 022E9 |
| ≿ | succsim | 0227F |
| ∋ | SuchThat | 0220B |
| ∑ | Sum | 02211 |
| ∑ | sum | 02211 |
| ♪ | sung | 0266A |
| ⋑ | Sup | 022D1 |
| ⊃ | sup | 02283 |
| ¹ | sup1 | 000B9 |
| ² | sup2 | 000B2 |
| ³ | sup3 | 000B3 |
| ⪾ | supdot | 02ABE |
| ⫘ | supdsub | 02AD8 |
| ⫆ | supE | 02AC6 |
| ⊇ | supe | 02287 |
| ⫄ | supedot | 02AC4 |
| ⊃ | Superset | 02283 |
| ⊇ | SupersetEqual | 02287 |
| ⟉ | suphsol | 027C9 |
| ⫗ | suphsub | 02AD7 |
| ⥻ | suplarr | 0297B |
| ⫂ | supmult | 02AC2 |
| ⫌ | supnE | 02ACC |
| ⊋ | supne | 0228B |
| ⫀ | supplus | 02AC0 |
| ⋑ | Supset | 022D1 |
| ⊃ | supset | 02283 |
| ⊇ | supseteq | 02287 |
| ⫆ | supseteqq | 02AC6 |
| ⊋ | supsetneq | 0228B |
| ⫌ | supsetneqq | 02ACC |
| ⫈ | supsim | 02AC8 |
| ⫔ | supsub | 02AD4 |
| ⫖ | supsup | 02AD6 |
| ⤦ | swarhk | 02926 |
| ⇙ | swArr | 021D9 |
| ↙ | swarr | 02199 |
| ↙ | swarrow | 02199 |
| ⤪ | swnwar | 0292A |
| ß | szlig | 000DF |